Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{4}}=\dfrac{b}{\dfrac{1}{6}}=\dfrac{c}{\dfrac{1}{8}}=\dfrac{a-b}{\dfrac{1}{4}-\dfrac{1}{6}}=24\)
Do đó: a=6; b=4; c=8
Do đội thứ nhất làm nhanh nhất nên số máy là lớn nhất và đội thứ 3 làm chậm nhất nên có số máy là ít nhất.
Gọi số máy của 3 đội lần lượt là x, y, z. Do càng nhiều máy thì thời gian hoàn thành công việc càng nhanh ( thời gian hoàn thành công việc ít đi ), nên số máy và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch, ta có:
\(\dfrac{x}{\dfrac{1}{4}}=\dfrac{x}{\dfrac{1}{6}}=\dfrac{x}{\dfrac{1}{8}}\)
Lại có số máy đội thứ nhất nhiều hơn đội thứ 2 là 2 máy nên x − y = 2
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{1}{4}}=\dfrac{x}{\dfrac{1}{6}}=\dfrac{x-y}{\dfrac{1}{4}-\dfrac{1}{6}}=\dfrac{2}{\dfrac{1}{12}}=24\)
Do đó,
x = 24.\(\dfrac{1}{4}\) = 6,
y = 24.\(\dfrac{1}{6}\) = 4,
z = 24. \(\dfrac{1}{8}\) =3
Vậy đội 1 có 6 máy, đội 2 có 4 máy và đội 3 có 3 máy.