Gọi \(x\) (tờ) là số tờ tiền loại 500 ngàn đồng (\(x\in Z^+\))
Gọi \(y\) (tờ) là số tờ tiền loại 100 ngàn đồng \(\left(y\in Z^+\right)\)
Do tổng số tiền là 10 triệu đồng nên ta có phương trình: \(500000x+100000y=10000000\)
\(\Leftrightarrow5x+y=100\) (1)
Do tổng số tờ tiền là 36 nên ta có phương trình: \(x+y=36\) (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}5x+y=100\\x+y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=64\\x+y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=16\\16+y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=16\left(nhận\right)\\y=20\left(nhận\right)\end{matrix}\right.\)
Vậy có 16 tờ tiền loại 500 ngàn đồng và 20 tờ tiền loại 100 ngàn đồng