B2: cho phương trình mx2 - 2 ( m + 1) x + m + 2= 0 (m là tham số)
a, giải phương trình với m = 1
b, chứng minh với mọi m phương trình luôn có nghiệm
Cho phương trình bậc hai x²-2x-m²=0 (*) m là tham số a) Giải phương trình (*) ứng với m=1 b) Với m nào thì phương trình (*) có 2 nghiệm phân biệt Giải giúp em với ạ
x² - 2(m - 2)x + m² - 5m - 4 = 0 (1) m là tham số a giải phương trình 1 với M = 1 b tìm tất cả các giá trị của tham số m để phương trình 1 có 2 nghiệm phân biệt x1 x2 thỏa mãn x1 bình + X2 bình bằng -3 x1 x2 - 4
3. phương trình \(x^2+2\left(m-1\right)x-2m-3=0\)(m là tham số) . luôn có 2 nghiệm phân biệt x1,x2 thảo mãn (4x1+5)(4x2+5)+19=0
Bài tập 1 Cho hệ phương trình {mx-2y=-1
{2x+3y=1 (1)
1. Giải hệ phương trình (1) khi m = 3 .
2. Tìm m để hệ phương trình có nghiệm x =- \(\dfrac{1}{2}\) và y =\(\dfrac{2}{3}\) .
3. Tìm nghiệm của hệ phương trình (1) theo m.
Cho phương trình x² +(m+3)x-2m+2=0 a. Tìm m để phương trình có hai nghiệm trái dấu. b. Tìm m để phương trình có hai nghiệm dương phân biệt. c. Tìm m để phương trình có hai nghiệm âm phân biệt. d. Tìm m để phương trình có ít một nghiệm dương.
Bài tập 1 Cho hệ phương trình (1)
1. Giải hệ phương trình (1) khi m = 3 .
2. Tìm m để hệ phương trình có nghiệm x = và y = .
3. Tìm nghiệm của hệ phương trình (1) theo m.
Tìm m để phương trình \(mx^2-\left(m+1\right)x+1=0\) có 2 nghiệm phân biệt
Cho phương trình: x2 - 2(m - 1)x + m - 5 = 0 (1), (x là ẩn, m là tham số).
a, Giải phương trình với m = 2.
b, Chứng minh phương trình (1) luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m. Tìm m để biểu thức P = x12 + x22 đạt giá trị nhỏ nhất.