Cho tg ABC cân tại A, có góc A < 90*, kẻ BH vuông góc với AC, CK vuông góc với AC. gọi O là giao điểm của BH và CK.
a, cm tg ABH= tg ACH.
b,tg OBC cân
c, tg OBK=tgOCK
Cho \(\Delta ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho: BD=CE. Kẻ BH vuông góc với AD tại H, kẻ CE vuông góc với AE tại K. Gọi I là giao điểm của 2 đường thẳng BH và CK. Chứng minh rằng:
a, \(\Delta ABH\)=\(\Delta ACK\)
b, AI là tia phân giác của ∠DAE
c, HK//DE
Cho tam giác ABC cân tại A .Trên tia đối của tia BC lấy điểm M .Trên tia đối của tia BC lấy N.Sao cho BM=CN.Kẻ BH vuông góc với AM,CK vuông góc với AM
a) CM: Tam giác AMN cân tại A
b)CM :BH=CK và AH=AK
c)CM:HB cắt AC tại O .CM AO là tia p/g của góc BAC và AO vuông góc với BC
Cho tam giác ABC cân tại A. AH vuông góc với BC(H € BC)
a) CM HB=HC
b) Trên tia đối BC lấy điểm M. Trên tia đối CB lấy điểm N sao cho BM=CN. Kẻ BH vuông góc với AM tại E, CF vuông góc với AN tại F. Gọi I là giao điểm của EB và FC. CM A, H, I thẳng hàng
Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt BC tại I. Trên cạnh AC lấy điểm D sao cho AD = AB.
a. Chứng minh BI = DI
b. Gọi K là giao điểm của Di và tia AB. Chứng minh tam giác BKI = tam giác DCI
c. Kẻ BH vuông góc với KC. Chứng minh BH song song AI.
Cho tam giác ABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC tại H, gọi K là giao điểm của hai đường thẳng BA và HE.
a) Chứng minh AE =HE ,AB = BH
b) Chứng minh tam giác BCK là tam giác cân
c) Tính BK, AC biết AB=6 cm BC=10 cm
d) Chứng minh AH song song KC
Cho ΔABC vuông cân tại A. Gọi M là trung điểm của B, điểm E nằm giữa M và C. Kẻ BH, CK cùng vuông góc với AE (H và K cùng thuộc đường thẳng AE ). Chứng minh rằng:
a) BH=AK b) ΔMBH=ΔMAK c) ΔMHK là tam giác vuông cân