\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}\)
\(=\dfrac{x+y+z}{y+z+1+x+z+1+x+y-2}\)
\(=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{y+z+1}=\dfrac{1}{2}\\\dfrac{y}{x+z+1}=\dfrac{1}{2}\\\dfrac{z}{x+y-2}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+z=2x\\2y=x+z\\2z=x+y-2\end{matrix}\right.\)
Cộng cả 3 vế:
\(2x+2y+2z=2x+2y+2z-2\)
Ko tồn tại 3 số x;y;z