B1: Cho biểu thức A=\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)
Chứng minh rằng biểu thức A luôn luôn có giá trị dương với mọi giá trị của biến
B2: Chứng minh rằng các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của các biến:
a,M= \(25x^2-20x+7\)
b, N= \(9x^2-6xy+2y^2+1\)
B3: Chứng minh rằng giá trị của các biểu thức sau luôn luôn âm với mọi giá trijcuar các biến
a, P=\(2x-x^2-2\)
b, Q=\(-x^2-y^2+8x+4y-21\)
Các bạn biết làm bài nào thì giúp mk nha
1, \(A=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\left(x^4-2.\dfrac{1}{2}x^2+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\)\(=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)
\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)
\(\left(x^2-\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)
Từ 3 điều trên \(\Rightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\ge0\)Vậy biểu thức A luôn có giá trị dương với mọi giá trị của biến
2,
a, \(M=25x^2-20x+7\)
\(=25x^2-20x+4+3\)
\(=\left(5x-2\right)^2+3\)
Ta có: \(\left(5x-2\right)^2\ge0\forall x\Rightarrow\left(5x-2\right)^2+3\ge0\)
Vậy biểu thức M luôn có giá trị dương với mọi giá trị của biến
b, \(N=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1\)
Ta có: \(\left(3x-y\right)^2\ge0\forall x,y\)
\(y^2\ge0\Rightarrow y^2+1\ge0\forall y\)
Từ 2 điều trên \(\Rightarrow\left(3x-y\right)^2+y^2+1\ge0\)
Vậy biểu thức N luôn có giá trị dương với mọi giá trị của biến
3,
a, \(P=2x-x^2-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-1\le0\)
Vậy biểu thức P luôn có giá trị âm với mọi giá trị của biến
b, \(Q=-x^2-y^2+8x+4y-21\)
\(=-\left(x^2-8x+16+y^2-4y+4+1\right)\)
\(=-\left(x-4\right)^2-\left(y-2\right)^2-1\)
Ta có: \(\left(x-4\right)^2\ge0\forall x\Rightarrow-\left(x-4\right)^2\le0\)
\(\left(y-2\right)^2\ge0\forall x\Rightarrow-\left(y-2\right)\le0\)
Từ 2 điều trên \(\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2\le0\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2-1\le0\)Vậy biểu thức Q luôn có giá trị âm với mọi giá trị của biến