Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Phương Anh

B1: Cho biểu thức A=\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)

Chứng minh rằng biểu thức A luôn luôn có giá trị dương với mọi giá trị của biến

B2: Chứng minh rằng các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của các biến:

a,M= \(25x^2-20x+7\)

b, N= \(9x^2-6xy+2y^2+1\)

B3: Chứng minh rằng giá trị của các biểu thức sau luôn luôn âm với mọi giá trijcuar các biến

a, P=\(2x-x^2-2\)

b, Q=\(-x^2-y^2+8x+4y-21\)

Các bạn biết làm bài nào thì giúp mk nha

Nhiên An Trần
22 tháng 9 2018 lúc 16:03

1, \(A=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)

\(=\left(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\left(x^4-2.\dfrac{1}{2}x^2+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\)\(=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)

Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)

\(\left(x^2-\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)

Từ 3 điều trên \(\Rightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\ge0\)Vậy biểu thức A luôn có giá trị dương với mọi giá trị của biến

2,

a, \(M=25x^2-20x+7\)

\(=25x^2-20x+4+3\)

\(=\left(5x-2\right)^2+3\)

Ta có: \(\left(5x-2\right)^2\ge0\forall x\Rightarrow\left(5x-2\right)^2+3\ge0\)

Vậy biểu thức M luôn có giá trị dương với mọi giá trị của biến

b, \(N=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1\)

Ta có: \(\left(3x-y\right)^2\ge0\forall x,y\)

\(y^2\ge0\Rightarrow y^2+1\ge0\forall y\)

Từ 2 điều trên \(\Rightarrow\left(3x-y\right)^2+y^2+1\ge0\)

Vậy biểu thức N luôn có giá trị dương với mọi giá trị của biến

3,

a, \(P=2x-x^2-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-1\le0\)

Vậy biểu thức P luôn có giá trị âm với mọi giá trị của biến

b, \(Q=-x^2-y^2+8x+4y-21\)

\(=-\left(x^2-8x+16+y^2-4y+4+1\right)\)

\(=-\left(x-4\right)^2-\left(y-2\right)^2-1\)

Ta có: \(\left(x-4\right)^2\ge0\forall x\Rightarrow-\left(x-4\right)^2\le0\)

\(\left(y-2\right)^2\ge0\forall x\Rightarrow-\left(y-2\right)\le0\)

Từ 2 điều trên \(\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2\le0\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2-1\le0\)Vậy biểu thức Q luôn có giá trị âm với mọi giá trị của biến


Các câu hỏi tương tự
Nguyễn Phương Anh
Xem chi tiết
Tạ Nguyễn Minh Ngọc
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Tạ Thu Hương
Xem chi tiết
ngocanh25
Xem chi tiết
Nguyễn Minh Châu
Xem chi tiết
Dương Thị Yến Nhi
Xem chi tiết
Lê Thị Xuân Niên
Xem chi tiết
vô gia cư
Xem chi tiết