\(x^4+\left(x-1\right)\left(x^2-2\left(x-1\right)\right)=0\)
<=> \(x^4+\left(x-1\right)\left(x^2-2x+2\right)=0\)
<=> \(x^4+x^3-2x^2+2x-x^2+2x-2=0\)
<=> \(x^4+x^3-3x^2+4x-2=0\)
<=> \(x^4+2x^3-2x^2-x^3-2x^2+2x+x^2+2x-2=0\)
<=> \(x^2\left(x^2+2x-2\right)-x\left(x^2+2x-2\right)+\left(x^2+2x-2\right)=0\)
<=> \(\left(x^2-x+1\right)\left(x^2+2x-2\right)=0\)
Hoàn toàn CM đc x2-x+1>0 vs mọi x
=> \(x^2+2x-2=0\) <=> \(\left(x+1\right)^2=3\) <=> \(\left[{}\begin{matrix}x=\sqrt{3}-1\\x=-\sqrt{3}-1\end{matrix}\right.\)(ktm)
Vậy pt vô nghiệm