B = 22 + 23 + 24 + ... + 298 + 299
2B = 23 + 24 + 25 + ... + 299 + 2100
2B - B = (23 + 24 + 25 + ... + 299 + 2100) - (22 + 23 + 24 + ... + 298 + 299)
B = 2100 - 22
B = 2100 - 4
B=\(2^2+2^3+2^4+...+2^{98}+2^{99}\)
2B=\(2^3+2^4+2^5+....+2^{99}+2^{100}\)
2B-B=B= \(2^{100}-2^2\)
Ta có:
\(B=2^2+2^3+2^4+...+2^{98}+2^{99}\)
\(\Rightarrow2B=2^3+2^4+2^5+...+2^{100}\)
\(\Rightarrow2B-B=\left(2^3+2^4+2^5+...+2^{100}\right)-\left(2^2+2^3+2^4+...+2^{99}\right)\)
\(\Rightarrow B=2^{100}-2^2\)