b) Giải:
Chứng minh các số mũ đều có số dư bằng \(3\) khi chia cho \(4\)
Đặt: \(\left\{{}\begin{matrix}555^{777}=4k_1+3\\555^{333}=4k_2+3\end{matrix}\right.\) ta có:
\(333^{555^{777}}+777^{555^{333}}=333^{4k_1+3}+777^{4k_2+3}\)
\(=333^3.\left(333^4\right)^{k_1}+777^3.\left(777^4\right)^{k_2}\)
\(=\left(\overline{...7}\right).\left(\overline{...1}\right)+\left(\overline{...3}\right).\left(\overline{...1}\right)=\left(\overline{...7}\right)+\left(\overline{...3}\right)\)
\(=\left(\overline{...0}\right)\Rightarrow333^{555^{777}}+777^{555^{333}}\) có chữ số tận cùng là \(0\)
\(\Leftrightarrow333^{555^{777}}+777^{555^{333}}⋮10\) (Đpcm)