\(A=\sqrt{\dfrac{\left(x^2-3\right)^2+12x^2}{-x^2}}+\sqrt{\dfrac{\left(x+2\right)^2}{-8x}}\)
Rút gọn
1. A = \(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
a) rút gọn
b) tìm x để A <-1
2. Cho A = \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x-2\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+3}{x-1}-\dfrac{2}{\sqrt{x}+1}\right)\)
a) Rút gọn
b) tìm x \(\in\) Z để A \(\in\) Z
Tìm x,y,z biết:
a.\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z\right)\)
b.\(\sqrt{x-2}+\sqrt{y+1995}+\sqrt{z-1996}=\dfrac{1}{2}\left(x+y+z\right)\)
A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
Rút gọn biểu thức trên
Tìm x thuộc Z để A thuộc Z
A=\(\dfrac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)
1) Cho biểu thức:
P=\(\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{2.\left(x-2\sqrt{x}+1\right)}{x-1}\)
a) Rút gọn P
b) Tìm x nguyên để P có giá trị nguyên
cho biểu thức: P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)
a, Tìm điều kiện của x để P được xác định. Rút gọn P
b, Tìm x để P > 4
Cho \(B=\left(1+\dfrac{\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a, Rút gọn B
b, Tìm a để B<1
c, Cho \(a=19-8\sqrt{3}\). Tính B
d, Tìm a ∈ Z để b ∈ Z
e, Tìm giá trị lớn nhất của M
Cho x,y,z>0 /xyz=8.
Tìm min P= \(\dfrac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\dfrac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\dfrac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)