\(=\sqrt{\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}}}=\sqrt{\dfrac{3\sqrt{2}-2\sqrt{3}}{6}}\)
\(=\sqrt{\dfrac{18\sqrt{2}-12\sqrt{3}}{36}}=\dfrac{\sqrt{18\sqrt{2}-12\sqrt{3}}}{6}\)
\(=\sqrt{\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}}}=\sqrt{\dfrac{3\sqrt{2}-2\sqrt{3}}{6}}\)
\(=\sqrt{\dfrac{18\sqrt{2}-12\sqrt{3}}{36}}=\dfrac{\sqrt{18\sqrt{2}-12\sqrt{3}}}{6}\)
1.Thu gọn
A=\(\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{4}+\sqrt{5}}+...+\dfrac{1}{\sqrt{2020}+\sqrt{2021}}\)
tìm a để biểu thức có nghĩa:
a) \(\sqrt{\dfrac{-a}{3}}\)
b) \(-\sqrt{\dfrac{1}{a^2}}\)
c) \(\sqrt{\dfrac{\left(1-a\right)^3}{a^2}}\)
d) \(\sqrt{\dfrac{a^{2^{ }}+1}{1-2a}}\)
e) \(\sqrt{a^2-1}\)
f) \(\sqrt{\dfrac{2a-1}{2-a}}\)
A= \(\dfrac{2\sqrt{a}}{\sqrt{a}+3}\)+\(\dfrac{\sqrt{a}+1}{\sqrt{a}-3}\)+\(\dfrac{3+7\sqrt{a}}{9-a}\)
\(\left(1+\dfrac{\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a-1}}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\\ a,TìmađểbiểuthứcAcónghĩa.Rútgọn\\ b,TínhgiátrịcủaAkhia=\dfrac{2}{7+3\sqrt{5}}\\ c,TìmasaochoA< 1\)
1.
A=\(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+...+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\)
Rút gọn biểu thức
a) \(\dfrac{\sqrt{14-6\sqrt{5}}}{\sqrt{5}-3}\)
b)\(\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}\)
c)\(\dfrac{2+\sqrt{2}}{\sqrt{1,5+\sqrt{2}}}\)
d) \(\dfrac{\sqrt{20}}{\sqrt{5}}+\dfrac{\sqrt{117}}{\sqrt{13}}+\dfrac{\sqrt{272}}{\sqrt{17}}+\dfrac{\sqrt{105}}{\sqrt{2\dfrac{1}{7}}}\)
e)\(\dfrac{x\sqrt{x}-y\sqrt{y}}{x+\sqrt{xy}+y},x,y>0\)
f)\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
g)\(\sqrt{\dfrac{2+a-2\sqrt{2a}}{a+3-2\sqrt{3a}}}v\text{ới}a>0,a\ne3\)
Tính :
\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...+\dfrac{1}{\sqrt{2017}-\sqrt{2018}}\)
M = \(\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
a) Rút gọn M
b) Tìm x để M = \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(a,2\sqrt{20}-\sqrt{50}+3\sqrt{80}-\sqrt{320}\)
\(b,\sqrt{32}-\sqrt{50}+\sqrt{18}\)
\(c,3\sqrt{3}+4\sqrt{2}-5\sqrt{27}\)
\(d,\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
e,\(\left(2+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2-\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)