Lời giải:
$a^{2018}+b^{2018}=a^{2020}+b^{2020}$
$\Leftrightarrow a^{2018}(a^2-1)+b^{2018}(b^2-1)=0(*)$
Xét các TH sau:
TH1: $a^2-1>0; b^2-1>0\Leftrightarrow (a-1)(a+1)>0; (b-1)(b+1)>0$
$\Leftrightarrow a>1; b>1$
$\Rightarrow a^{2018}(a^2-1)+b^{2018}(b^2-1)>0$ (trái với $(*))$
TH2: $a^2-1< 0; b^2-1< 0$ thì $a^{2018}(a^2-1)+b^{2018}<0$ (trái với $(*))$
TH3: $b^2-1\leq 0\leq a^2-1$ (TH $b^2-1>0>a^2-1$ tương tự do vai trò $a,b$ như nhau)
$\Rightarrow b\leq 1\leq a\Rightarrow b^2\leq a^2$
Từ $(*)\Rightarrow 0=a^{2018}(a^2-1)+b^{2018}(b^2-1)\geq b^{2018}(a^2-1)+b^{2018}(b^2-1)$
$\Leftrightarrow 0\geq b^{2018}(a^2+b^2-2)$
$\Leftrightarrow a^2+b^2\leq 2$
Do đó, theo BĐT AM-GM:
$P=a^2+b^2+2+2(a+b)\leq a^2+b^2+2+2\sqrt{2(a^2+b^2)}\leq 2+2+2\sqrt{2.2}=8$
Vậy $P_{\min}=8$ khi $a=b=1$