1.
a) \(\left|5-2x\right|:3-2,6=0\)
\(\left|5-2x\right|=7,8\)
\(\Rightarrow\left[{}\begin{matrix}5-2x=7,8\\5-2x=-7,8\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1,4\\x=6,4\end{matrix}\right.\)
Vậy ....
b) \(\left|2x-1\right|.5-7=0\)
\(\left|2x-1\right|=1.4\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=1,4\\2x-1=-1,4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1,2\\x=-0,2\end{matrix}\right.\)
Vậy...
c) \(\left|x+1\right|+\left|x-2\right|=1\)
* Nếu \(x< -1\) => \(\left\{{}\begin{matrix}x+1< 0\\x-2< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left|x+1\right|=-x-1\\\left|x-2\right|=2-x\end{matrix}\right.\)
Khi đó \(-x-1+2-x=1\)
\(\Rightarrow x=0\) ( loại vì x > -1)
* Nếu \(-1\le x< 2\)\(\Rightarrow\left\{{}\begin{matrix}x+1\ge0\\x-2< 0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x-2\right|=2-x\end{matrix}\right.\)
Khi đó \(x+1+2-x=1\)
\(\Rightarrow3=1\) (Vô lí)
* Nếu \(x\ge2\Rightarrow\left\{{}\begin{matrix}x+1\ge0\\x-2\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x-2\right|=x-2\end{matrix}\right.\)
Khi đó \(x+1+x-2=1\)
\(x=1\)(loại)
Vậy ...
tik mik nha !!!