Câu 4:
1. Hiển nhiên $AD\parallel BC$. Áp dụng định lý Talet:
$\frac{BM}{AN}=\frac{PM}{PN}$
$\frac{CM}{NE}=\frac{PM}{PN}$
$\Rightarrow \frac{BM}{AN}=\frac{CM}{NE}$. Mà $BM=CM$ do $M$ là trung điểm $BC$ nên $AN=NE$. $N$ thì nằm giữa $A,E$ (dễ cm)
Do đó $N$ là trung điểm $AE$
2.
Xét tam giác $ABC$ và $DCA$ có:
$\widehat{ABC}=\widehat{DCA}=90^0$
$\widehat{BCA}=\widehat{CAD}$ (so le trong)
$\Rightarrow \triangle ABC\sim \triangle DCA$ (g.g)
3. Theo định lý Pitago:
Từ tam giác đồng dạng phần 2 suy ra:
$\frac{AC}{DA}=\frac{BC}{CA}$
$\Rightarrow AD=\frac{AC^2}{BC}=\frac{6^2}{4}=9$ (cm)
4,Theo phần 1 thì:
$\frac{PM}{PN}=\frac{BM}{AN}=\frac{CM}{AN}$
Mà cũng theo định lý Talet: $\frac{CM}{AN}=\frac{QM}{QN}$
$\Rightarrow \frac{PM}{PN}=\frac{QM}{QN}$
(đpcm)