\(A=3+3^2+...+3^{24}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{23}+3^{24}\right)\\ =12+3^2\left(3+3^2\right)+...+3^{22}\left(3+3^2\right)\\ =12+3^2.12+...+12.3^{22}\\ =12\left(1+...+3^{22}\right)⋮12\)
A = 3 + 32 + 33 + ......... + 323 + 324
A = ( 3 + 32 ) + ( 33 + 34 ) + ............ + ( 323 + 324 )
A = 12 + 32 . ( 3 + 32 ) + .............. + 323 . ( 3 + 32 )
A = 12 + 32 . 12 + ............... + 323 . 12
A = 12 . ( 1 + 32 + ............. + 323 )
Mà 12 \(⋮\) 12 \(\Rightarrow\) 12 . ( 1 + 32 + .............. + 323 ) \(⋮\) 12
Vậy A \(⋮\) 12 ( ĐPCM )
Ta có:3+3^2+3^3+...+3^24(gồm 24 số hạng)
<=>(3+3^2)+(3^3+3^4)+...+(3^23+3^24)
<=>1(3+3^2)+3^2(3+3^2)+...+3^22(3+3^2)
<=>1.12+3^2.12+...+3^22.12
<=>12(1+3^2+3^4+...+3^24)
Vậy A chia hết cho 12