a/
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{7-x}=a\\\sqrt[3]{x-5}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3+b^3=3\\a^3-b^3=2\left(6-x\right)\end{matrix}\right.\) với \(a+b\ne0\)
Ta có hệ:
\(\left\{{}\begin{matrix}a^3+b^3=2\\\frac{a-b}{a+b}=\frac{a^3-b^3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3=2\\\frac{a-b}{a+b}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{2}\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}a^3+b^3=2\\a-b=0\end{matrix}\right.\) \(\Rightarrow a=b=1\Rightarrow\left\{{}\begin{matrix}\sqrt[3]{7-x}=1\\\sqrt[3]{x-5}=1\end{matrix}\right.\) \(\Rightarrow x=6\)
TH2: \(\left\{{}\begin{matrix}a^3+b^3=2\\\frac{1}{a+b}=\frac{a^2+ab+b^2}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3=2\\\frac{1}{a+b}=\frac{a^2+ab+b^2}{a^3+b^3}=\frac{a^2+ab+b^2}{\left(a+b\right)\left(a^2-ab+b^2\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3=2\\\frac{a^2+ab+b^2}{a^2-ab+b^2}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3=2\\ab=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b^3=2\end{matrix}\right.\\\left\{{}\begin{matrix}b=0\\a^3=2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=7\\x=5\end{matrix}\right.\)
b/
Lập phương 2 vế:
\(\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)^3=5x\)
\(\Leftrightarrow x+1+x-1+3\sqrt[3]{\left(x^2-1\right)}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\)
\(\Leftrightarrow2x+3\sqrt[3]{x^2-1}\left(\sqrt[3]{5x}\right)=5x\)
\(\Leftrightarrow x=\sqrt[3]{5x\left(x^2-1\right)}\)
\(\Leftrightarrow x^3=5x\left(x^2-1\right)\)
\(\Leftrightarrow x\left(5\left(x^2-1\right)-x^2\right)=0\)
\(\Leftrightarrow x\left(4x^2-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{\sqrt{5}}{2}\\x=-\frac{\sqrt{5}}{2}\end{matrix}\right.\)