Cho \(A=1^{2011}+2^{2011}+3^{2011}+...+2010^{2011}\) và \(B=\dfrac{2010.2011}{2}\). CMR: \(A⋮B\)
tìm các cặp số (a,b) thỏa mãn biểu thức:\(\sqrt{a+b-2011}=\sqrt{a}+\sqrt{b}-\sqrt{2011}\)
cho a,b,c dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\).
CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\sqrt{2011}}{2}\)
cho a,b dương và a2000+b2000=a2001+b2001=a2002+b2002. tính a2011+b2011
Cho các số dương a, b, c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}++\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho các số dương a, b, c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho a, b, c, x, y, z thỏa mãn \(a,b,c\ne0\) và \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\). Tính \(M=x^{2011}+y^{2011}+z^{2011}\)
Cho 3 số dương a, b, c thoả mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). Chứng minh rằng: \(\dfrac{a^2}{b+c}+\dfrac{a^2}{b+c}+\dfrac{a^2}{b+c}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho các số a,b,c khác 0. tính giá trị biểu thức:
M=\(x^{2011}+y^{2011}+z^{2011}\)
Biết x,y,z thỏa mãn điều kiênh
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)