a/ \(6⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(6\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=2\\x-1=3\\x-1=6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=4\\x=7\end{matrix}\right.\)
Vậy ...........
b/ \(15⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(15\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=1\\2x+1=3\\2x+1=5\\2x+1=15\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\\x=7\end{matrix}\right.\)
Vậy ...
c/ \(x+16⋮x+1\)
Mà \(x+1⋮x+1\)
\(\Leftrightarrow15⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(15\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=1\\x+1=3\\x+1=5\\x+1=15\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=4\\x=14\end{matrix}\right.\)
Vậy ..
a) 6 \(⋮\) ( x - 1 )
\(\Rightarrow\) x - 1 \(\in\)Ư(6)
\(\Rightarrow\) x - 1 \(\in\) { 1;2;3;6 }
\(\Rightarrow\) x \(\in\) { 2;3;4;7 }
Vậy ....
b) 15 \(⋮\) ( 2x + 1 )
\(\Rightarrow\) 2x + 1 \(\in\) Ư(15)
\(\Rightarrow\) 2x + 1 \(\in\) { 1;3;5;15 }
\(\Rightarrow\) 2x \(\in\) { 0;2;4;14 }
\(\Rightarrow\) x \(\in\) { 0;1;2;7 }
Vậy ....
c) (x + 16) \(⋮\) (x + 1)
\(\Rightarrow\) (x + 1 + 15) \(⋮\) (x+1)
Mà x + 1\(⋮\) x+1
\(\Rightarrow\) 15 \(⋮\) x + 1
\(\Rightarrow\) x + 1 \(\in\) Ư(15)
\(\Rightarrow\) x + 1 \(\in\) { 1;3;5;15 }
\(\Rightarrow\) x \(\in\) { 0;2;4;14}
Vậy ....