a)
\(\left(x+1\right)\left(y-2\right)=5\\ \Rightarrow\left(x+1\right),\left(y-2\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Ta có bảng:
x+1 | 1 | -1 | 5 | -5 |
y-2 | 5 | -5 | 1 | -1 |
x | 0 | -2 | 4 | -6 |
y | 7 | -3 | 3 | 1 |
Vậy \(\left(x;y\right)=\left(0;7\right),\left(-2;-3\right),\left(4;3\right),\left(-6;1\right)\)
b)
\(\left(x-5\right)\left(y+4\right)=-7\\ \Rightarrow\left(x-5\right),\left(y+4\right)\inƯ\left(-7\right)=\left\{1;-1;7;-7\right\}\)
Ta có bảng:
x-5 | 1 | -1 | 7 | -7 |
y+4 | -7 | 7 | -1 | 1 |
x | 6 | 4 | 12 | -2 |
y | -11 | 3 | -5 | -3 |
Vậy \(\left(x;y\right)=\left(6;-11\right),\left(4;3\right),\left(12;-5\right),\left(-2;-3\right)\)
e)
\(x-\left(17-8\right)=5+\left(10-3x\right)\\ \Rightarrow x-9=5+10-3x\\ \Rightarrow x+3x=5+10+9\\ \Rightarrow4x=24\\ \Rightarrow x=\dfrac{24}{4}=6\)
Vậy \(x=6\)
Bài 1:
a) Ta có: (x+1)(y-2)=5
nên x+1;y-2 là các ước của 5
\(\Leftrightarrow x+1;y-2\inƯ\left(5\right)\)
\(\Leftrightarrow x+1;y-2\in\left\{1;-1;5;-5\right\}\)
Trường hợp 1:
\(\left\{{}\begin{matrix}x+1=1\\y-2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=7\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x+1=5\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x+1=-1\\y-2=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x+1=-5\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=1\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
b) Ta có: \(\left(x-5\right)\left(y+4\right)=-7\)
nên x-5;y+4 là các ước của -7
\(\Leftrightarrow x-5;y+4\inƯ\left(-7\right)\)
\(\Leftrightarrow x-5;y+4\in\left\{1;-1;7;-7\right\}\)
Trường hợp 1:
\(\left\{{}\begin{matrix}x-5=1\\y+4=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-11\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-5=-7\\y+4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x-5=-1\\y+4=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x-5=7\\y+4=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=-5\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(6;-11\right);\left(-2;-3\right);\left(4;3\right);\left(12;-5\right)\right\}\)
c) Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy: (x,y)=(-1;1)
d) Ta có: \(\left(2x-18\right)^2\ge0\forall x\)
\(\left(y+37\right)^2\ge0\forall y\)
Do đó: \(\left(2x-18\right)^2+\left(y+37\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}2x-18=0\\y+37=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=18\\y=0-37\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=-37\end{matrix}\right.\)
Vậy: (x,y)=(9;-37)
e) Ta có: \(x-\left(17-8\right)=5+\left(10-3x\right)\)
\(\Leftrightarrow x-17+8=5+10-3x\)
\(\Leftrightarrow x-9=-3x+15\)
\(\Leftrightarrow x-9+3x-15=0\)
\(\Leftrightarrow4x-24=0\)
\(\Leftrightarrow4x=24\)
hay x=6
Vậy: x=6