a) <=> \(\frac{4^x}{5^{x^2}}=1\) <=> \(4^x=5^{x^2}\Leftrightarrow log4^x=log5^{x^2}\) <=> x.log4 = x2.log5 <=> x2. log 5 - x log4 = 0 <=> x. (x.log5 - log 4) = 0
<=> x = 0 hoặc x.log5 - log 4 = 0
x.log5 - log 4 = 0 <=> x = log4/log5 = \(log_54\)
b) \(\frac{5.2^{\frac{x}{2}}.3^{\frac{x}{2}}}{3^x}-\frac{4.3^x}{3^x}+\frac{9.2^x}{3^x}=0\)
<=> \(5.\left(\frac{2}{3}\right)^{\frac{x}{2}}-4+9.\left(\frac{2}{3}\right)^x=0\)
Đặt \(t=\left(\frac{2}{3}\right)^{\frac{x}{2}}\) ( t > 0) . Phương trình trở thành: 9t2 + 5t - 4 = 0 <=> t = -1 (Loại) hoặc t = 4/9 ( Thỏa mãn)
t = 4/9 => \(\left(\frac{2}{3}\right)^{\frac{x}{2}}=\frac{4}{9}=\left(\frac{2}{3}\right)^2\) <=> x/2 = 2 <=> x = 4
c) <=> \(\frac{3.8^x}{8^x}+\frac{4.12^x}{8^x}=\frac{18^x}{8^x}+\frac{2.27^x}{8^x}\)
<=> \(3+4.\left(\frac{3}{2}\right)^x=\left(\frac{3}{2}\right)^{2x}+2.\left(\frac{3}{2}\right)^{3x}\)
Đặt \(t=\left(\frac{3}{2}\right)^x\) ( t > 0) . Phương trình trở thành: 3 + 4t = t2 + 2t3
<=> 2t3 + t2 - 4t - 3 = 0 <=> (t +1)2. ( t - 3/2) = 0 <=> t = -1 ( Loại) hoặc t = 3/2 ( Thỏa mãn)
t = 3/2 => \(\left(\frac{3}{2}\right)^x=\frac{3}{2}\) <=> x = 1