\(a,2\sqrt{20}-\sqrt{50}+3\sqrt{80}-\sqrt{320}\)
\(b,\sqrt{32}-\sqrt{50}+\sqrt{18}\)
\(c,3\sqrt{3}+4\sqrt{2}-5\sqrt{27}\)
\(d,\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
e,\(\left(2+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2-\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)
a) \(2\sqrt{20}-\sqrt{50}+3\sqrt{80}-\sqrt{320}=2\sqrt{2^2.5}-\sqrt{5^2.2}+3\sqrt{4^2.5}-\sqrt{8^2.5}\\ =4\sqrt{5}-5\sqrt{2}+12\sqrt{5}-8\sqrt{5}=8\sqrt{5}-5\sqrt{2}\)
b) \(\sqrt{32}-\sqrt{50}+\sqrt{18}=\sqrt{4^2.2}-\sqrt{5^2.2}+\sqrt{3^2.2}=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)
c) \(3\sqrt{3}+4\sqrt{2}-5\sqrt{27}=3\sqrt{3}+4\sqrt{2}-5\sqrt{3^2.3}=3\sqrt{3}+4\sqrt{2}-15\sqrt{3}=4\sqrt{2}-12\sqrt{3}\)
d) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}=\dfrac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3}+1}-1\right)}{\left(\sqrt{\sqrt{3}+1}-1\right)\left(\sqrt{\sqrt{3}+1}+1\right)}\\ =\dfrac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\left(\sqrt{3+1}\right)^2-1^2}\\ =\dfrac{2\sqrt{3}}{\sqrt{3}}=2\)
e)\(\left(2+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2-\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)=2^2-\left(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right)^2=4-\left(\dfrac{9+6\sqrt{3}+3}{3+2\sqrt{3}+1}\right)\\ =4-\left(\dfrac{6\left(2+\sqrt{3}\right)}{2\left(2+\sqrt{3}\right)}\right)=4-3=1\)
b) \(\sqrt{32}-\sqrt{50}+\sqrt{18}=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=\left(4-5+3\right)\sqrt{2}=2\sqrt{2}\)
d) \(\dfrac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)}{\sqrt{3}+1-1}-\dfrac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}-1\right)}{\sqrt{3}+1-1}=\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}-1=0\)
e)\(\left(2+\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\right)\left(2-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right)=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=4-3=1\)
a) \(4\sqrt{5}-\sqrt{50}+12\sqrt{5}-8\sqrt{5}=8\sqrt{5}-\sqrt{50}\)
c) \(3\sqrt{3}+4\sqrt{2}-15\sqrt{3}=-12\sqrt{3}+4\sqrt{2}\)
Chậc, không biết đúng không nữa