Cho a,b,c>0. Cmr: a) \(\frac{ab}{a^2+bc+ca}+\frac{bc}{b^2+ca+ab}+\frac{ca}{c^2+ab+bc}\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)
b) \(\frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\le1\)
Cho 3 số thực a,b,c chứng minh rằng:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ac+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
Cho các số dương \(a,b,c\) thoả mãn \(a+b+c=3\). Chứng minh rằng: \(\dfrac{a^2+bc}{b+ca}+\dfrac{b^2+ca}{c+ab}+\dfrac{c^2+ab}{a+bc}\ge3\)
cho a,b,c là các số thực không âm. CMR:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
Cho a, b, c là 3 số dương thỏa mãn ab + bc + ca = 3abc. Chứng minh:
\(\dfrac{a}{a^2+bc}+\dfrac{b}{b^2+ca}+\dfrac{c}{c^2+ab}\le\dfrac{3}{2}\)
1. cho a,b,c>0. Cmr: a) \(S=\frac{3\left(a^4+b^4+c^4\right)}{\left(a^2+b^2+c^2\right)}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)
b) \(\frac{a^3+b^3+c^3}{abc}+\frac{9\left(ab+bc+ca\right)}{a^2+b^2+c^2}\ge12\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
tìm giá trị nhỏ nhất của biểu thức P=ab^2/(a+b) + bc^2/(b+c) + ca^2/(c+a)
biết 1/ab + 1/bc + 1/ca =3
Cho a,b,c dương t/m abc=1. Tìm max
\(T=\dfrac{ab}{a^2+ab+b^2}+\dfrac{bc}{b^2+bc+c^2}+\dfrac{ca}{c^2+ca+a^2}\)
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh:
ab + bc + ca ≤ a2 + b2 + c2 < 2 (ab+bc+ca)