Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ánh Nguyễn

Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh:
ab + bc + ca ≤ a2 + b2 + c2 < 2 (ab+bc+ca)

Nguyen
1 tháng 2 2019 lúc 16:22

Áp dụng BĐT Cô-si, ta có:

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+a^2\ge2ac\)

\(\Rightarrow ab+bc+ca\le a^2+b^2+c^2\);\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

Có: \(a^2+b^2+c^2< 2\left(a^2+b^2+c^2\right)\)(a,b,c>0)

Vậy ta có đpcm.

Nguyễn Thành Trương
1 tháng 2 2019 lúc 20:46

Câu 4:
Theo BĐT tam giác ta có:
$a< b+c$
$=> a^2< ab+ac$
$b< c+a$
$=> b^2 <bc+ba$
$c<a+b$
$=> c^2 <ca+cb$
Cộng vế với vế 3 BĐT trên ta được:
$a^2+b^2+c^2 < 2(ab+bc+ca) (1)$
Ta có $(a-b)^2+(b-c)^2+(c-a)^2 ≥ 0$ với mọi a,b,c là độ dài 3 cạnh của tam giác
$<=> a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2 ≥ 0$
$<=> 2(a^2+b^2+c^2) ≥ 2(ab+bc+ca)$
$<=> ab+bc+ca ≤ a^2+b^2+c^2 (2)$
Dấu = xảy ra khi $a=b=c$ <=> tam giác đó đều
(1),(2) => đpcm

Nguyễn Thành Trương
1 tháng 2 2019 lúc 20:49

Lời giải:

Theo $BĐT$ tam giác ta có:
$a< b+c$
$=> a^2< ab+ac$
$b< c+a$
$=> b^2 <bc+ba$
$c<a+b$
$=> c^2 <ca+cb$
Cộng vế với vế 3 BĐT trên ta được:
$a^2+b^2+c^2 < 2(ab+bc+ca) (1)$
Ta có $(a-b)^2+(b-c)^2+(c-a)^2 ≥ 0$ với mọi a,b,c là độ dài 3 cạnh của tam giác
$<=> a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2 ≥ 0$
$<=> 2(a^2+b^2+c^2) ≥ 2(ab+bc+ca)$
$<=> ab+bc+ca ≤ a^2+b^2+c^2 (2)$
Dấu $=$ xảy ra khi $a=b=c$ $<=>$ tam giác đó đều
$(1),(2) => đpcm$


Các câu hỏi tương tự
Liên Trần
Xem chi tiết
Lưu Phương Thảo
Xem chi tiết
dia fic
Xem chi tiết
hoàng minh chính
Xem chi tiết
Niii
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Hày Cưi
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết