Bài 1: Cho a,b thỏa mãn \(a^2\) +\(ab^2-2b^4=0\) ; a,b≠ 0; \(b^2≠ 3a ; b≠ 0 ; b≠-2a\)
Tính A= \(\frac{a+2b^2}{3a-b^2}+\frac{ab-3b^2}{2ab+b^2}\)
cho a,b thỏa mãn :0 ≤ a,b ≤1. Chứng minh:\(\left(a^2+ab-3a-b+2\right)\left(b^2+ab-a-b\right)\) ≤ 0
Cho 3 số a,b,c >0 và a2+b2+c2=1
Tìm giá trị lớn nhất của \(P=\sqrt{3a+bc}+\sqrt{3b+ac}+\sqrt{3c+ab}\)
Tim GTNN: \(M=a^2+ab+b^2-3a-3b+2001\)
Cho ba số a,b,c khác 0 và ab+bc+ac=0. Tính giá trị của biểu thức
A=\(\dfrac{\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}}{\dfrac{bc}{a^2+2bc}+\dfrac{ac}{b^2+2ac}+\dfrac{ab}{c^2+2ab}}\)
cho a+b+c=0 tính
A=ab/(a^2+b^2-c^2)+bc/(b^2+c^2-a^2)+ca/(c^2+a^2-b^2)
1. Cho a,b > 0. CMR:
a) \(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{ab}{a^2-ab+b^2}\ge3\)
b) \(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{9ab}{a^2+b^2}\ge\dfrac{13}{2}\)
Các bạn ơi giúp mk với.
CM:a2+b2-ab-a+b+2>0
Cho a,b,c > 0. CMR :
a)\(\frac{a^3}{b}\ge a^2+ab-b^2\)
b)\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)