Cho a + b + c = 0. CMR \(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2=\dfrac{\left(a^2+b^2+c^2\right)^2}{2}\)
cho 1/a +1 /b +1/c = 0 . Tính
A= bc/a^2 + ca/b^2 +ab/c^2
Cho a, b, c > 0. CMR :
\(\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)
Cho a, b, c > 0. Chứng minh rằng :
\(a+b+c\le\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)
Cho a,b,c>0 và ab+bc+ca=3
CMR: \(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\le1\)
Cho 3 số a,b,c tm: c2 + 2.(ab-bc-ca)=0 , b \(\ne\) c , a+b \(\ne\) c. CM
\(\frac{2a^2-2ac+c^2}{2b^2-2bc+c^2}=\frac{a-c}{b-c}\)
Cho 3 số dương a,b,c.CMR: bc^2/a+ca^2/b+ab^2/c>=ab+bc+ca
Cho a+b+c+ab+bc+ca=6. Cmr \(a^2+b^2+c^2\ge3\)
1.cho x+y+z=xyz và xy+yz+zx≠3
cmr: x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)/xy+yz+zx=xyz
2.cmr nếu c^2+2(ab-ac-bc)=0và b≠c,a+b≠c thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
3. cho a,b,c thỏa mãn abc≠0 và ab+bc+ca=0
tính :P=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)