Với mọi số thực x, y ta luôn có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)
Do đó:
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ca\)
Cộng vế với vế:
\(3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ca\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)
\(\Leftrightarrow a^2+b^2+c^2\ge3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)