Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
Tìm giá trị nhỏ nhất của biểu thức :
A= \(\sqrt{x-2\sqrt{x-3}}\)
B=\(\sqrt{\left(x-2018\right)^2}+\sqrt{\left(x-1\right)^2}\)
D=\(\sqrt{\left(2x-1\right)^2+\sqrt{\left(2x+2018\right)^2}}\)
Cho biểu thức P = \(\left(1+\frac{1}{\sqrt{x}-1}\right)\times\frac{1}{x-\sqrt{x}}\)
a) Rút gọn P b) Tìm x để \(P\times\sqrt{5+2\sqrt{6}}\times\left(\sqrt{x}-1\right)^2=x-2018+\sqrt{2}+\sqrt[]{3}\)
giải phương trình: 4x+2x=3x=1
So sánh\(A=\sqrt{2018}-\sqrt{2017}và\sqrt{2019}-\sqrt{2018}\)
Cho biểu thức B = \(\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right).\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
( Với \(x\ge0\) và \(x\ne1\))
a) Rút gọn B
b) Tính \(\sqrt{B}\) với \(x=2018+2\sqrt{2017}+1\)
\(\sqrt{x^2-2x+2018}+2019.\sqrt{x^4+2x^2+2020}=2018\)
Giúp mik vs ạ
\(\sqrt{x+2018}+\sqrt{y-2019}+\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z\right)\)
1.Rút gọn biểu thức \(A=\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\)với \(x\ge2\)
2. cho \(a=\sqrt{17}-1\). Tính giá trị của biểu thức \(P=\left(a^5+2a^4-17a^3-a^2+18a-17\right)^{2018}\)
Phân tích ra thừa số :
a)2018 - x với x>0
b)2018 +x với x<0
c)\(7x-12\sqrt{x}+5\)
d)\(43+3\sqrt{7}-2\sqrt{5}\)
e)x\(x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}\)