Lời giải:
Câu GPT: bạn xem lại đề bài.
Câu so sánh
Áp dụng hằng đẳng thức: \((a-b)(a+b)=a^2-b^2\Rightarrow a-b=\frac{a^2-b^2}{a+b}\) vào bài toán ta có:
\(\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)
Mà dễ thấy \(0< \sqrt{2018}+\sqrt{2017}< \sqrt{2019}+\sqrt{2018}\Rightarrow \frac{1}{\sqrt{2018}+\sqrt{2017}}> \frac{1}{\sqrt{2019}+\sqrt{2018}}\)
\(\Rightarrow \sqrt{2018}-\sqrt{2017}> \sqrt{2019}-\sqrt{2018}\)
Akai Haruma cô ơi em có cách khác câu so sánh mặc dù có lẽ cách này không hay và ngắn gọn như của cô:) (câu gpt thì cách em hệt của cô rồi)
Xét hiệu hai vế: \(\sqrt{2018}-\sqrt{2017}-\sqrt{2019}+\sqrt{2018}\)
\(=2\sqrt{2018}-\left(\sqrt{2019}+\sqrt{2017}\right)\)
\(=2\sqrt{2018}-\frac{2}{\sqrt{2019}-\sqrt{2017}}\)
\(=2\left(\sqrt{2018}-\frac{1}{\sqrt{2019}-\sqrt{2017}}\right)\)
Ta có: \(\sqrt{2018}>1;\sqrt{2019}-\sqrt{2017}>0\Rightarrow\frac{1}{\sqrt{2019}-\sqrt{2017}}< 0\)
Từ đây suy ra \(2\left(\sqrt{2018}-\frac{1}{\sqrt{2019}-\sqrt{2017}}\right)>2\left(1-1\right)=0\)
Suy ra \(\sqrt{2018}-\sqrt{2017}>\sqrt{2019}-\sqrt{2018}\)