Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hưng Việt Nguyễn

a) (x3 – x2 + x)(121 – 25y2 – 10y) – (x3 – x2 + x) – (121 – 25y2 – 10y) +1

b) X4 – 14x3 + 71x2 – 154x + 120 

Giúp mik vs

 

Nguyễn Lê Phước Thịnh
9 tháng 9 2021 lúc 14:21

a: \(\left(x^3-x^2+x\right)\left(121-25y^2-10y\right)-\left(x^3-x^2+x\right)-\left(121-25y^2-10y\right)+1\)

\(=\left(x^3-x^2+x\right)\left(120-25y^2-10y\right)-\left(120-25y^2-10y\right)\)

\(=\left(120-25y^2-10y\right)\left(x^3-x^2+x-1\right)\)

\(=-\left[\left(25y^2+10y+1\right)-121\right]\left[x^2\left(x-1\right)+\left(x-1\right)\right]\)

\(=-\left(5y-10\right)\left(5y-12\right)\left(x-1\right)\left(x^2+1\right)\)

\(=-5\left(y-2\right)\left(5y-12\right)\left(x-1\right)\left(x^2+1\right)\)

b: \(x^4-14x^3+71x^2-154x+120\)

\(=x^4-5x^3-9x^3+45x^2+26x^2-130x-24x+120\)

\(=\left(x-5\right)\left(x^3-9x^2+26x-24\right)\)

\(=\left(x-5\right)\left(x^3-4x^2-5x^2+20x+6x-24\right)\)

\(=\left(x-5\right)\left(x-4\right)\left(x^2-5x+6\right)\)

\(=\left(x-5\right)\left(x-4\right)\left(x-3\right)\left(x-2\right)\)


Các câu hỏi tương tự
Hưng Việt Nguyễn
Xem chi tiết
Đoàn Phan Hưng
Xem chi tiết
Bin
Xem chi tiết
Trần Đức Anh
Xem chi tiết
Hưng Việt Nguyễn
Xem chi tiết
idol gioi tre
Xem chi tiết
Hạ Hạ
Xem chi tiết
Quân Ngô
Xem chi tiết
Mih Pearl
Xem chi tiết