a) Ta có: \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+4x+4+2x-8=x^2-6x+8\)
\(\Leftrightarrow x^2+6x-4-x^2+6x-8=0\)
\(\Leftrightarrow12x-12=0\)
\(\Leftrightarrow12x=12\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(2x-3\right)-3\left(x-2\right)=2\left(x-1\right)\)
\(\Leftrightarrow2x^2-3x+2x-3-3x+6=2x-2\)
\(\Leftrightarrow2x^2-4x+3-2x+2=0\)
\(\Leftrightarrow2x^2-6x+5=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{5}{2}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{4}=0\)(Vô lý)
Vậy: \(S=\varnothing\)
c) Ta có: \(\left(x+3\right)^2-\left(x-3\right)^2=6x+18\)
\(\Leftrightarrow x^2+6x+9-\left(x^2-6x+9\right)-6x-18=0\)
\(\Leftrightarrow x^2-9-x^2+6x-9=0\)
\(\Leftrightarrow6x-18=0\)
\(\Leftrightarrow6x=18\)
hay x=3
Vậy: S={3}
d) Ta có: \(\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x\left(x^2+2x+1\right)=5x-5x^2-11x-22\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=-5x^2-6x-22\)
\(\Leftrightarrow-5x^2+2x-1+5x^2+6x+22=0\)
\(\Leftrightarrow8x+21=0\)
\(\Leftrightarrow8x=-21\)
hay \(x=-\dfrac{21}{8}\)
Vậy: \(S=\left\{-\dfrac{21}{8}\right\}\)