a) tính các giá trị lượng giác của góc alpha biết
1. cos \(\alpha\) = \(\dfrac{-2}{\sqrt{5}}\) và \(\dfrac{-\pi}{2}\)< \(\alpha\) < 0
2. tan \(\alpha\) = - 2 và \(\dfrac{\pi}{2}\)< \(\alpha\) < \(\pi\)
3. cot \(\alpha\) = 3 và \(\pi\) < \(\alpha\) < \(\dfrac{3\pi}{2}\)
b)
1. Cho tan x = - 2 và 90° < x < 180°. Tính A = \(\dfrac{2\sin x+\cos x}{\cos x-3\sin x}\)
2. Cho tan x = - 2 . Tính B = \(\dfrac{2\sin x+3\cos x}{3\sin x-2\cos x}\)
a:
2: pi/2<a<pi
=>sin a>0 và cosa<0
tan a=-2
1+tan^2a=1/cos^2a=1+4=5
=>cos^2a=1/5
=>\(cosa=-\dfrac{1}{\sqrt{5}}\)
\(sina=\sqrt{1-\dfrac{1}{5}}=\dfrac{2}{\sqrt{5}}\)
cot a=1/tan a=-1/2
3: pi<a<3/2pi
=>cosa<0; sin a<0
1+cot^2a=1/sin^2a
=>1/sin^2a=1+9=10
=>sin^2a=1/10
=>\(sina=-\dfrac{1}{\sqrt{10}}\)
\(cosa=-\dfrac{3}{\sqrt{10}}\)
tan a=1:cota=1/3
b;
tan x=-2
=>sin x=-2*cosx
\(A=\dfrac{2\cdot sinx+cosx}{cosx-3sinx}\)
\(=\dfrac{-4cosx+cosx}{cosx+6cosx}=\dfrac{-3}{7}\)
2: tan x=-2
=>sin x=-2*cosx
\(B=\dfrac{-4cosx+3cosx}{-6cosx-2cosx}=\dfrac{1}{8}\)