a) Tìm giá trị nhỏ nhất của các biểu thức sau :
A = \(x^2+10x-37\) với x ∈ R
B = \(\left(\frac{1}{2}x^2+1\right)^2-3\left(\frac{1}{2}x^2+1\right)\) với x ∈ R
C = \(2x^2+9y^2-6xy-6x-12y+20\) với x ∈ R
D = \(x^2-2xy+2y^2+2x-10y+17\) với x , y ∈ R
b) Tìm giá trị lớn nhất của biểu thức sau :
A = \(6x-x^2+3\) với mọi x ∈ R
B = \(\left(1-2x\right)\left(x+3\right)-9\) với x ∈ R
C = \(\frac{1}{x^2-4x+9}\) với x ∈ R
\(A=\left(x+5\right)^2-62\ge-62\)
\(B=\left(\frac{1}{2}x^2+1-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
\(C=\left(x-3y+2\right)^2+\left(x-5\right)^2-9\ge-9\)
\(D=\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\)
\(A=-\left(x-3\right)^2+12\le12\)
\(B=-2x^2-5x+3=-2\left(x+\frac{5}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
\(C=\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)