Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chan

a) \(\sqrt{36x-72}-15\sqrt{\frac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\)

b) \(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

c) \(\sqrt{3x^2}=x+2\)

Cao Ngọc Diệp
17 tháng 8 2020 lúc 10:45

Lời giải:

a) ĐK: $x\geq 2$

PT $\Leftrightarrow \sqrt{36(x-2)}-15\sqrt{\frac{1}{25}.(x-2)}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm.

b) ĐK: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{2x-2\sqrt{2x-1}}=2$

$\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2$

$\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2$

$\Leftrightarrow |\sqrt{2x-1}-1|=2$

$\Leftrightarrow \sqrt{2x-1}-1=\pm 2$

$\Leftrightarrow \sqrt{2x-1}=3$ (chọn) hoặc $\sqrt{2x-1}=-1$

$\Rightarrow x=5$ (thỏa mãn)

3.

PT \(\left\{\begin{matrix} x+2\geq 0\\ 3x^2=(x+2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 2x^2-4x-4=0\end{matrix}\right.\Rightarrow x=1\pm \sqrt{3}\)

Khách vãng lai đã xóa
Akai Haruma
23 tháng 10 2020 lúc 16:17

Lời giải:

a) ĐK: $x\geq 2$

PT $\Leftrightarrow \sqrt{36(x-2)}-15\sqrt{\frac{1}{25}.(x-2)}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm.

b) ĐK: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{2x-2\sqrt{2x-1}}=2$

$\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2$

$\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2$

$\Leftrightarrow |\sqrt{2x-1}-1|=2$

$\Leftrightarrow \sqrt{2x-1}-1=\pm 2$

$\Leftrightarrow \sqrt{2x-1}=3$ (chọn) hoặc $\sqrt{2x-1}=-1$

$\Rightarrow x=5$ (thỏa mãn)

3.

PT \(\left\{\begin{matrix} x+2\geq 0\\ 3x^2=(x+2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 2x^2-4x-4=0\end{matrix}\right.\Rightarrow x=1\pm \sqrt{3}\)


Các câu hỏi tương tự
Anh Quynh
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Lê Lan Hương
Xem chi tiết
Quynh Existn
Xem chi tiết
Luân Đào
Xem chi tiết
Quynh Existn
Xem chi tiết
Nhĩ Vương Gia
Xem chi tiết
Anh Quynh
Xem chi tiết
Ánh Dương
Xem chi tiết