a/
\(\Leftrightarrow2\left(x^2-x+1\right)-\left(x^2+x+1\right)=-\frac{\sqrt{3}}{3}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)
\(\Leftrightarrow6a^2+\sqrt{3}ab-3b^2=0\)
\(\Leftrightarrow\left(3a-\sqrt{3}b\right)\left(2a+\sqrt{3}b\right)=0\)
\(\Leftrightarrow3a-\sqrt{3}b=0\Rightarrow b=\sqrt{3}a\)
\(\Leftrightarrow\sqrt{x^2+x+1}=\sqrt{3}\sqrt{x^2-x+1}\)
\(\Leftrightarrow x^2+x+1=3x^2-3x+3\)
b/ ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}x+3=a\\\sqrt{\left(4-x\right)\left(12+x\right)}=b\end{matrix}\right.\)
\(\Rightarrow a^2+b^2=x^2+6x+9+48-8x-x^2=57-2x=2\left(28-x\right)+1\)
\(\Rightarrow28-x=\frac{a^2+b^2-1}{2}\)
Phương trình trở thành:
\(ab=\frac{a^2+b^2-1}{2}\Leftrightarrow\left(a-b\right)^2=1\Leftrightarrow\left[{}\begin{matrix}a+1=b\\a-1=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=\sqrt{\left(4-x\right)\left(12+x\right)}\\x+2=\sqrt{\left(4-x\right)\left(12+x\right)}\end{matrix}\right.\) \(\Leftrightarrow...\)
c/ ĐKXĐ: ...
\(\sqrt{x\left(x^2-1\right)}=2\left(x^2-1\right)-x\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{x^2-1}=b\ge0\end{matrix}\right.\)
\(ab=2a^2-b^2\Leftrightarrow2a^2-ab-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\2a+b=0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow a=b\Leftrightarrow\sqrt{x}=\sqrt{x^2-1}\)
\(\Leftrightarrow x^2-x-1=0\)
d/ Là \(2x^2+5\) hay \(2x+5\) bạn?