a) So sánh và sắp xếp các số hữu tỉ sau theo thứ tự tăng dần
\(a=2^{45}\) \(b=3^{36}\) \(c=4^{27}\) \(d=5^{18}\)
b) Cho biểu thức
\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\) với x, y, z, t là các số tự nhiên khác 0. Chứng minh \(M^{10}\) bé hơn 1025
c)Cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\) Chứng minh rằng: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)