a) Hệ số góc của đường thẳng đi qua gốc tọa độ và điểm \(M\left(\sqrt{3};\dfrac{\sqrt{3}}{2}\right)\) là :
(A) \(\sqrt{3}\) (B) \(\dfrac{\sqrt{3}}{2}\) (C) \(\dfrac{1}{2}\) (D) \(\dfrac{3}{2}\)
b) Hệ số góc của đường thẳng đi qua hai điểm \(P\left(1;\sqrt{3}+\sqrt{2}\right)\) và \(Q\left(\sqrt{3};3+\sqrt{2}\right)\) là :
(A) \(-\sqrt{3}\) (B) \(\left(\sqrt{3}-1\right)\) (C) \(\left(1-\sqrt{3}\right)\) (D) \(\sqrt{3}\)
a) Gọi phương trình đường thẳng cần lập là y=ax
Từ giả thiết => \(\dfrac{\sqrt{3}}{2}=\sqrt{3}a\)
=>a\(=\dfrac{1}{2}\)
Chọn C
b)Gọi phương trình đường thẳng cần lập là y=ax+b
Từ giả thiết ta có:\(\left\{{}\begin{matrix}\sqrt{3}+\sqrt{2}=a+b\\3+\sqrt{2}=\sqrt{3}a+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}-3=\left(1-\sqrt{3}\right)a\\a+b=\sqrt{3}+\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\sqrt{3}\\b=\sqrt{2}\end{matrix}\right.\)
Chọn D