a) \(\tan x = 1 \Leftrightarrow \tan x = \tan \frac{\pi }{4} \Leftrightarrow x = \frac{\pi }{4} + k\pi \)
b) \(\tan x = \tan {67^ \circ } \Leftrightarrow x = {67^ \circ } + k{.180^ \circ }\)
a) \(\tan x = 1 \Leftrightarrow \tan x = \tan \frac{\pi }{4} \Leftrightarrow x = \frac{\pi }{4} + k\pi \)
b) \(\tan x = \tan {67^ \circ } \Leftrightarrow x = {67^ \circ } + k{.180^ \circ }\)
a) Giải phương trình \(\cot x = 1\)
b) Tìm góc lượng giác x saoo cho \(\cot x = \cot \left( { - {{83}^ \circ }} \right)\)
a) Giải phương trình \(\cos x = - \frac{1}{2}\)
b) Tìm góc lượng giác x sao cho \(\cos x = \cos \left( { - {{87}^ \circ }} \right)\)
a) Giải phương trình: \(\sin x = \frac{{\sqrt 3 }}{2}\)
b) Tìm góc lượng giác x sao cho \(\sin x = \sin {55^ \circ }\)
Sử dụng MTCT để giải mỗi phương trình sau với kết quả là radian (làm tròn kết quả đến hàng phần nghìn)
a) \(\sin x = 0,2\)
b) \(\cos x = - \frac{1}{5}\)
c) \(\tan x = \sqrt 2 \)
Cho hai phương trình (với cùng ẩn x): \({x^2} - 3x + 2 = 0\,\,\,\left( 1 \right)\)và \(\left( {x - 1} \right)\left( {x - 2} \right) = 0\,\,\,\left( 2 \right)\)
a) Tìm tập nghiệm \({S_1}\) của phương trình (1) và tập nghiệm \({S_2}\) của phương trình (2)
b) Hai tập \({S_1},{S_2}\) có bằng nhau hay không?
Giải phương trình: \({\left( {x - 1} \right)^2} = 5x - 11\)
Giải phương trình \(\sin 2x = \sin \left( {x + \frac{\pi }{4}} \right)\)
Hai phương trình \(x - 1 = 0\)và \(\frac{{{x^2} - 1}}{{x + 1}}\) có tương đương không vì sao?
Giải phương trình
a) \(\sin \left( {2x + \frac{\pi }{4}} \right) = \sin x\)
b) \(\sin 2x = \cos 3x\)
c) \({\cos ^2}2x = {\cos ^2}\left( {x + \frac{\pi }{6}} \right)\)