ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Ta có :
\(A=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}+\frac{x+\sqrt{x}-2}{\sqrt{x}+2}\)
\(=\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-2}+\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+2}\)
\(=\sqrt{x}-2+\sqrt{x}-1\)
\(=2\sqrt{x}-3\)
Vậy \(A=2\sqrt{x}-3\) với ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Với mọi x ta có :
\(\sqrt{x}\ge0\)
\(\Leftrightarrow2\sqrt{x}-3\ge-3\)
\(\Leftrightarrow A\ge-3\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{9}{4}\)
Vậy...