chứng minh
a. \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\)
b. \(\frac{\sqrt{x+2\sqrt{x-2}-1}.\left(\sqrt{x-2}-1\right)}{\sqrt{x}-3}=\sqrt{x}+\sqrt{3}\) Với x \(\ge\)2; x \(\ne\)3
c.\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\) Với a > 0; a \(\ne\)1
d.\(\sqrt{\frac{x-6\sqrt{x}+9}{x+6\sqrt{x}+9}}\) Với x \(\ge\) 0
e. \(\left(x-y\right).\sqrt{\frac{xy}{\left(x-y\right)^2}}\)
Đề bài: Rút gọn biểu thức:
1. \(\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{^{ }\frac{a^4}{x^4}-1}\)
2. \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\) . \(\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
3. \(\left(\frac{3}{\sqrt{1+x}}\sqrt{1-x}\right)\) : \(\left(\frac{3}{\sqrt{1-x^2}}+1\right)\)
4. \(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right)\) : \(\left(\frac{a}{\sqrt{ab+b}}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)\)
5. \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}\) + \(\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\) .\(\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
Các bạn giúp tớ nhé, hứa sẽ tick, tớ cảm ơn!!!!
Rút gọn biểu thức
a,\(\frac{1}{\left(2\sqrt{x}-2\right)}-\frac{1}{\left(2\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(1-x\right)}\)
b, \(\left(\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\right):\left(\dfrac{x+y+2xy}{1-xy}+1\right)\)
c, \(\dfrac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
P=\(\left(\frac{2}{\sqrt{x}-1}-\frac{5}{x+\sqrt{x}+2}\right):\left(1+\frac{3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right)\)
a) rút gọn P
giải giùm mình bài này:
1. Cho A=\(\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)
a) tìm điều kiện
b) rút gọn
c) tính A biết x=\(6+4\sqrt{2}\)
2. Cho A=\(\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}+3}{2-\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) rút gọn
b) tìm x để \(A=\frac{-2}{5}\)
Chứng minh các biểu thức sau không phụ thuộc vào biến:
a) A = \(\frac{1}{x}.\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}+\frac{\sqrt{x+1}-\sqrt{x-1}}{\sqrt{x+1}+\sqrt{x-1}}\right)\) với x>1
b) B = \(\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}+1}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\) với x>= 0
c) C = \(\frac{\sqrt{a^3}+a}{a^2+\sqrt{a^5}}.\left(\frac{b^2}{a-\sqrt{a^2-b^2}}+\frac{b^2}{a+\sqrt{a^2-b^2}}\right)\) với a>0 và |a| > |b|
d) D = \(\frac{a+b\sqrt{a}}{b-a}.\sqrt{\frac{ab+a^2-2\sqrt{a^3b}}{b^2+2b\sqrt{a}+a}}:\frac{a}{\sqrt{a}+\sqrt{b}}\) với b>a>0
Rút gọn
A=\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
B=\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right).\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)\)
C=\(\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
Rút gon
\(J=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right):\left(1-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(K=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right)\)
\(I=\left(\frac{\sqrt{a}-2}{a-1}-\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}\right).\left(1+\frac{1}{\sqrt{a}}\right)\)
Giúp mk với các cao nhân ơi,mk xin cảm on nhiều. Mk sẽ tick cho.
\(B=\left(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x-3}}+\frac{3\sqrt{x}-1}{\left(\sqrt{x-1}\right)\left(\sqrt{x}-3\right)}\right):\left(1-\frac{1}{\sqrt{x}-1}\right)\)
a) Rút gọn biểu thức B
b) Tìm x \(\in\) Zđể B nhận giá trị nguyên