*Để A là phân số thì \(n-3\ne0\Rightarrow\) \(n\ne3\) (\(n\in Z\))
*Ta có: \(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}=\dfrac{2n+1+3n-5-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\)
\(\Rightarrow\) \(A\in Z\) khi \(\dfrac{4}{n-3}\in Z\)
\(\Rightarrow4⋮n-3\)
hay \(n-3\inƯ\left(4\right)\)
\(\Rightarrow\) \(n-3\in\left\{-4;-2;-1;1;2;4\right\}\)
Ta có bảng sau:
n-3 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -1 | 1 | 2 | 4 | 5 | 7 |
Vậy \(n\in\left\{-1;1;2;4;5;7\right\}\)