Cho a, b, c thỏa mãn \(0< a,b,c< \frac{1}{2}\) và 2a + 3b + 4c = 3. Tìm GTNN của biểu thức:
\(P=\frac{2}{a\left(3b+4c-2\right)}+\frac{9}{b\left(4a+8c-3\right)}+\frac{8}{c\left(2a+3b-1\right)}\)
Cho biểu thức
\(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}\)(với a>0,b>0 và a khác b
1, CM \(P=\frac{1}{ab}\)
2, Giả sử a,b thay đổi sao cho \(4a+b+\sqrt{ab}=1\). Tìm GTNN của P
Cho a,b,c > 0 và 3 + \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=12.\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Chứng minh : \(\frac{1}{4a+b+c}+\frac{1}{4b+c+a}+\frac{1}{4c+a+b}\)≤\(\frac{1}{6}\)
Cho a,b,c là các số dương thỏa mãn: \(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=12\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Chứng minh rằng: \(\frac{1}{4a+b+c}+\frac{1}{a+4b+c}+\frac{1}{a+b+4c}\le\frac{1}{6}\)
Cho a, b > 0. Chứng minh \(\frac{a^2+b^2}{\left(4a+4b\right)\left(3a+4b\right)}\ge\frac{1}{25}\)
Cho các số thực a,b,c thay đổi thỏa mãn điều kiện: \(\left\{{}\begin{matrix}a,b,c>0\\abc=1\end{matrix}\right.\)
Chứng minh rằng:
\(A=\frac{a^4b}{a^2+1}+\frac{b^4c}{b^1+1}+\frac{c^4a}{c^2+1}\ge\frac{3}{2}\)
Cho a,b,c thuộc R+/ a+b+c=1
a, chứng minh \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)> hoặc = 1
b, Tìm gtnn của: P = \(2018.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
Cho a+b+c=0 và \(a,b,c\ne0\) . Chứng minh đẳng thức
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
Cho a,b,c là các số thực dương thay đổi .Tìm GTNN của biểu thức:
\(P=\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\frac{c}{4a}\)