a) Tính đạo hàm của hàm số \(y=\sqrt{sinx+cosx}\)
b) Hãy viết phương trình tiếp tuyến với đồ thị (C) của hàm số \(y=\dfrac{x+3}{x-1}\) biết tiếp tuyến vuông góc với đường thẳng \(y=\dfrac{1}{4}x+5\)
Câu 1: Tính giới hạn: lim (x\(\rightarrow\)-1)\(\dfrac{2x^2-x-3}{x^2-1}\)
Câu 2: Tính đạo hàm của hàm số sau:
a. y=2x3-cosx-\(\sqrt{x}\)+2020 b. y=(x2-5)10
Câu 3:Viết phương trình tiếp tuyến của đồ thị (C): y=-x2-20, biết tiếp tuyến có hệ số góc k=4.
Câu 4 Cho hàm số:y=x.sinx. Chứng minh: y'+yn-x.(cosx-sinx)=sinx+2cos
Cho hàm số : \(y=-x^4-x^2+6\) (C)
a) Tính \(y',y"\)
b) Tính \(y'''\left(-1\right);y'''\left(2\right)\)
c) Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến vuông góc với đường thẳng \(y=\dfrac{1}{6}x-1\)
Cho hàm số \(y=\dfrac{2}{3}mx^3-x^2+m-1\) có đồ thị (C)
a) Xác định m để đồ thị (C) đi qua \(x=1\)
b) Gọi \(\left(C_1\right)\) là đồ thị của hàm số ứng với \(m=1\). Viết phương trình tiếp tuyến của \(\left(C_1\right)\) tại điểm có hoành độ \(x=1\)
c) Viết phương trình tiếp tuyến của \(\left(C_1\right)\) song song với đường thẳng có phương trình :
\(4x-y+1=0\)
y=x3-2x2+4x-5
viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến có hệ số góc nhỏ nhất
Câu 1: Tìm các giới hạn sau :
a) lim \(\frac{n^2+2n+1}{2n^2-1}\)
b) lim \(\frac{2\sqrt{x+1}-x^2+2x+2}{x}\) ( x \(\rightarrow\) 0 )
Câu 2: Cho hàm số y = f (x ) = \(\frac{x+1}{2x-1}\) có đồ thị (C)
a. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng -1
b. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có tung độ bằng 1
c. Viết phương trình tiếp tuyến của đồ thị (C) tại giao điểm của đồ thị (C) với trục tung
d. Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến song song với đường thẳng d có phương trình 6x + 2y - 1 = 0
Câu 3: Tìm đạo hàm của các hàm số
a) y = sin2 2x ;
b) y = x4 - 2x2 + 1 ;
c) y = \(\frac{3x-1}{x+2}\) ;
d) y = \(\left(x^2+x+1\right)^{10}\)
e) y = \(\sqrt{2x^2-x+3}\)
HELP ME !!!!!
cho hàm số \(f\left(x\right)=x^3-3x^2+2\)
a, giải bất phương trình \(f'\left(x\right)\le0\)
b, giải phương trình \(f'=\left(x^2-3x+2\right)=0\)
c, đặt \(g\left(x\right)=f\left(1-2x\right)+x^2-x+2022\) giải bất phương trình\(g'\left(x\right)\ge0\)
1) cho đồ thị (H) y=\(\dfrac{x+2}{x-1}\)và điểm M \(\in\)(H) có tung độ 4. Phương trình tiếp tuyến của (H) tại điểm M có dạng y=ax+b, khi đó b-a2 bằng
A. 6 B.19
C.1 D. -1
Cho hàm số y=(f) =x3+x2+x-5
a) giải bất phương trình :y'<=6
b) viết phương trình tiếp tuyến với đồ thị hàm số , biết tiếp tuyến có hệ số góc bằng 6
Các bạn giải nhanh dum mình