Cho hình bình hành ABCD. Khi đó hiệu AB → - CD → bằng
A. 0 →
B. 2*AB →
C. AC →
D. AD →
có ai biết làm toán hình ko chỉ mình với
BÀI 1 : Cho hình bình hành ABCD tâm O . chứng minh rằng :
a) vecto CO - vecto OB = vecto BA b) vecto AB - vecto BC = vecto DB
c) vecto DA - vecto DB = vecto OD - vecto OC d) vecto DA - vecto DB + vecto DC = vecto O
BÀI 2 : chứng minh rằng 4 điểm A,B,C,D bất kì ta có :
vecto AC + vecto BD = vecto AD + vecto BC
BÀI 3 : cho tứ giác ABCD . Gọi I , J là trung điểm AD , BC ; P là trung điểm IJ.
a) tính vecto AB + vecto DC + vecto BD + vecto CA
b) CMR : vecto AB + vecto CD = vecto AD + vecto CB , vecto AB + vecto DC = 2IJ
c) CMR : vecto PA + vecto PB + vecto PC + vecto PD = vecto 0 , vecto AB + vecto AC + vecto AD = 4AP
MÌNH CẦN GẤP LẮM GIÚP MÌNH NHA
Cho em hỏi vì sao vecto AB+ vecto BC = vecto AC mà không phải CA
và mũi tên của vector trong tam giác, hình bình hành là quy ước hay tự đánh vậy?
Cho hình chữ nhật ABCD có tâm O. Biết 5 , 12 . AB a AD a a. Chứng minh rằng: AC AB OC OD b. Chứng minh rằng: AB AD BC CD
Cho 2 hình bình hành hình ABCD (tâm O) và ABEF và EH = FG = AD . Chứng minh
1.
DA - DB + DC = 0
2.
MA + MC = MB + MD (M là điểm tùy ý)
3.
OA + OB + OC + OD = AB + DA + CD + BC
4. Tứ giác CDGH là bình hành
Cho hình vuông ABCD cạnh a. Tính độ dài các vectơ AB + AD; AB + AC; AB - AD
cho hình bình hành ABCD tâm O. CMR:
a) \(\overrightarrow{CO}\) - \(\overrightarrow{OB}\) = \(\overrightarrow{BA}\)
b)\(\overrightarrow{AB}\) - \(\overrightarrow{BC}\) = \(\overrightarrow{DB}\)
c)\(\overrightarrow{DA}\) - \(\overrightarrow{DB}\) = \(\overrightarrow{OD}\) - \(\overrightarrow{OC}\)
d)\(\overrightarrow{DA}\) - \(\overrightarrow{DB}\) + \(\overrightarrow{DC}\) = \(\overrightarrow{0}\)
: Cho hình bình hành ABCD có tâm O. Tìm các vecto sau
a) BD-BA
b)bc-bd+ba
c)oc+ab-do
d)ad-ba-ao
Cho hình thang vuông ABCD vuông tại A và B, AB=AD=a, BC=2a. Xác định và tính theo a độ dài
1,vectơ AB + vecto BC - vecto CD
2, vecto AB + vecto AD
3, vecto AB + vecto DC - vecto DA
Cho hình bình hành ABCD có tâm O. Chứng minh rằng :
a) \(\overrightarrow{CO}-\overrightarrow{OB}=\overrightarrow{BA}\)
b) \(\overrightarrow{AB}-\overrightarrow{BC}=\overrightarrow{DB}\)
c) \(\overrightarrow{DA}-\overrightarrow{DB}=\overrightarrow{OD}-\overrightarrow{OC}\)
d) \(\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}\)