ĐỀ CƯƠNG ÔN TẬP ĐẠI SỐ LỚP 8 HỌC KÌ I
Năm học 2015 - 2016
Đại số Chương I
* Dạng thực hiện phép tính
Bài 1. Tính:
a. x2(x – 2x3)
b. (x2 + 1)(5 – x)
c. (x – 2)(x2 + 3x – 4)
d. (x – 2)(x – x2 + 4)
e. (x2 – 1)(x2 + 2x)
f. (2x – 1)(3x + 2)(3 – x)
g. (x + 3)(x2 + 3x – 5)
h. (xy – 2).(x3 – 2x – 6)
i. (5x3 – x2 + 2x – 3).(4x2 – x + 2)
Bài 2. Tính:
a. (x – 2y)2
b. (2x2 +3)2
c. (x – 2)(x2 + 2x + 4)
d. (2x – 1)3
Bài 3: Rút gọn biểu thức
a. (6x + 1)2 + (6x – 1)2 – 2(1 + 6x)(6x – 1)
b. 3(22 + 1)(24 + 1)(28 + 1)(216 + 1)
c. x(2x2 – 3) – x2(5x + 1) + x2.
4d 3x(x – 2) – 5x(1 – x) – 8(x2 – 3)
Bài 4. Tính nhanh:
a. 101^2
b. 97.103
c. 77^2 + 232^2 + 77.46
d. 105^2 – 5^2
e. A = (x – y)(x2 + xy + y2) + 2y3 tại x = và y =
* Dạng tìm x
Bài 5: Tìm x, biết
1. (x – 2)2 – (x – 3)(x + 3) = 6
. 2. 4(x – 3)2 – (2x – 1)(2x + 1) = 10
4. (x – 4)2 – (x – 2)(x + 2) = 6.
5. 9 (x + 1)2 – (3x – 2)(3x + 2) = 10
* Dạng toán phân tích đa thức thành nhân tử
Bài 6. Phân tích các đa thức sau thành nhân tử
a. 1 – 2y + y^2
b. (x + 1)^2 – 25
c. 1 – 4x^2
d. 8 – 27x^3
e. 27 + 27x + 9x^2 + x^3
f. 8x^3 – 12x^2y + 6xy^2 – y^3
g. x^3 + 8y^3
Bài 7 . Phân tích các đa thức sau thành nhân tử:
a. 3x^2 – 6x + 9x^2
b. 10x(x – y) – 6y(y – x)
c. 3x^2 + 5y – 3xy – 5x
d. 3y^2 – 3z^2 + 3x^2 + 6xy
e. 16x^3 + 54y^3
f. x^2 – 25 – 2xy + y^2
g. x^5 – 3x^4 + 3x^3 – x^2.
Bài 8: Phân tích đa thức thành nhân tử
1. 5x^2 – 10xy + 5y^2 – 20z^2
2. 16x – 5x^2 – 3
3. x^2 – 5x + 5y – y^2
4. 3x^2 – 6xy + 3y^2 – 12z^2
5. x^2 + 4x + 3
6. (x2 + 1)^2 – 4x^2
7. x^2 – 4x – 5
Tìm x, biết:
a) 7x2 - 28 = 0
b) \(\dfrac{2}{3}\)x(x2 - 4) = 0
c) 2x(3x - 5) - (5 - 3x) = 0
d) (2x - 1)2 - 25 = 0
Câu 3. Giải các phương trình sau bằng cách đưa về dạng ax+b= 0
1. a, 3x-2=2x-3; b, 3-4y+24+6y=y+27+3y
c, 7-2x=22-3x; d, 8x-3=5x+12
e, x-12+4x=25+2x-1; f, x+2x+3x-19=3x+5
g, 11+8x-3=5x-3+x; h, 4-2x+15=9x+4-2
2. a, 5-(x-6)=4(3-2); b, 2x (x+2)2-8x2=2(x-2) (x2+2x-4)
c, 7-(2x+4)=-(x+4); d, (x-2)3+(3x-1) (3x+1)=(x+1)3
e, (x+1) (2x-3)=(2x-1) (x+5); f, (x-1)3-x(x+1)2=5x (2-x)-11 (x+2)
g, (x-1)-(2x-1)=9-x; h, (x-3) (x+4)-2(3x-2)=(x-4)2
i, x(x+3)2-3x=(x+2)3+1; j, (x+1) (x2-x+1)-2x=x(x+1) (x-1)
3. a, 1,2-(x-0,8)=-2(0,9+x); b, 3,6-0,5 (2x+1)=x-0,25 (2-4x)
c, 2,3x-2 (0,7+2x)= 3,6-1,7x; d, 0,1-2 (0,5t-0,1)=2 (t-2,5)-0,7
e, 3+2,25x+2,6= 2x+5+0,4x; f, 5x+3,48-2,35x= 5,38-2,9x+10,42
a) x2(x – 2x3) b) (x2 + 1)(5 – x)
c) (2x – 1)(3x + 2)(3 – x) d) (x – 2)(x – x2 + 4)
e) ( x2 – 2xy + y2).(x – y) f) (x2 – 1)(x2 + 2x)
tìm x biết:
a)x2 + 3x = 0 b) x3 – 4x = 0
c) 5x(x-1) = x-1 d) 2(x+5) - x2-5x = 0
e) 2x(x-5)-x(3+2x)=26 f) 5x.(x – 2012) – x + 2012 = 0
Giải các phương trình sau:
a) 1/x-2 - 1/x2 - 4 = 4/5
b) 1/x+2 + 1/(x+2)2 = 22
c) 3/2x-16 + 3x-20/x-8 + 1/8 = 13x-10x2/3x-24
d) 2 + 2x-8x/2x2+8x + 2x2+7x+23/2x2+7x-4 = 2x+5/2x-1
e) 1/2-x + 14/x2-9 = x-4/x+3 + 7/3+x
g) 3/2x+1 = 6/2x+3 + 8/4x2+8x+3
Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0
1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)
g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)
i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)
p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)
r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)
t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)
v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)
Bài 1: Rút gọn biểu thức:
A = 2x3 + 3(x -1)(x +1) – 5x(x+1)
B = (5-2x)3 – (3x +5)(5-3x)
C = (3x +1)2 – (2x -1)2
D = (2x+1)3 + (3-x)2– 2(2x+1)(3 - x)
E = (x-2)3 – x(x+1)(x-1) +6x(x-3)
F = (x-1)3 -3(1-x)(x+1) – (x2 +x +1)(x-1) -3x
giúp mk với tứ tư mk phải nộp rùi
bài 1:
a, \(2x\left(3x^2-5x+3\right)\)
b, \(-2x\left(x^2+5x-3\right)\)
c, \(\dfrac{-1}{2}x\left(2x^3-4x+3\right)\)
bài 2:
a,\(\left(2x-1\right).\left(x^2-5-4\right)\)
b,\(-\left(5x-4\right).\left(2x+3\right)\)
c,\(\left(2x-y\right).\left(4x^2-2xy+y^2\right)\)
d,\(\left(3x-4\right).\left(x+4\right).\left(5-x\right).\left(2x^2+3x-1\right)\)
e,\(7\left(x-4\right)-\left(7x+3\right).\left(2x^2-x+4\right)\)
bài 3:
c/m rằng gtri của biểu thức ko phụ thuộc vào gtri của biến
a,\(x\left(3x+12\right)-\left(7x-20\right)+x^2\left(2x-3\right)-x\left(2x^2+5\right)\)
b,\(3\left(2x-1\right)-5\left(x-3\right)+6\left(3x-4\right)-19x\)
bài 4 :tìm x biết
a, \(3x+2\left(5-x\right)=0\)
b,\(x\left(2x-1\right).\left(x+5\right)-\left(2x^2+1\right).\left(x+4,5\right)=3,5\)
c,\(3x^2-3x\left(x-2\right)=36\)
d,\(\left(3x^2-x+1\right).\left(x-1\right)+x^2.\left(4-3x\right)=\dfrac{5}{2}\)