Ôn tập: Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hinamori Amu

A = 4x2 - 8x + 2017

Tính giá trị nhỏ nhất của biểu thức

lê thị hương giang
15 tháng 12 2017 lúc 21:21

\(A=4x^2-8x+2017\)

\(=\left(4x^2-8x+4\right)+2013\)

\(=4\left(x^2-2x+1\right)+2013\)

\(=4\left(x-1\right)^2+2013\)

Ta có :

\(4\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow4\left(x-1\right)^2+2013\ge2013\forall x\)

Dấu = xảy ra \(\Leftrightarrow4\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy \(Min_A=2013\Leftrightarrow x=1\)

hattori heiji
15 tháng 12 2017 lúc 21:58

A = 4x2 - 8x + 2017

A=4x2-8x+4+2013

A=(4x2-8x+4)+2013

A=4(x2-2x+1)+2013

A=4(x-1)2+2013

Do (x-1)2 ≥ 0 ∀ x

=>4(x-1)2≥0

=>4(x-1)2+2013≥2013

=>A≥2013

=>MinA=2013 khi

x-1=0

=>x=1

vậy MinA =2013 khi và chỉ khi x=1

vu thi thao
17 tháng 12 2017 lúc 11:18

Phân thức đại số

Izumiki Akiko
17 tháng 12 2017 lúc 22:18

A= 4x2 - 8x + 2017

A= 4x2 - 8x + 4 + 2013

A= (4x2 - 8x + 4) + 3013

A= (2x - 2)2 + 2013

Do (2x - 2)2 \(\ge\) 0 \(\forall\) x

=> (2x - 2)2 + 2013 \(\ge\) 2013 > 0 \(\forall\) x

Dấu " = " xảy ra khi :

(2x - 2)2 = 0

=> 2x - 2 = 0

=> 2x = 2

=> x = 1

Vậy \(\min\limits_{ }\) A = 2013 khi x = 1


Các câu hỏi tương tự
Đinh Cẩm Tú
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Nhi Hoàng Anh
Xem chi tiết
Takanashi Hikari
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Phạm Nguyễn Diệu Linh
Xem chi tiết
Trọng Nghĩa Nguyễn
Xem chi tiết
Trọng Nghĩa Nguyễn
Xem chi tiết