Giải phương trình
1) 5(x - 3) - 4 = 2(x - 1)
2) 5(x - 3) - 2(x - 5) = x-2
3) 3(x - 2) - 14x = 2(3-) + 1
4) (x + 1)²+ 2x = x(x + 1) + 6
5) 3 - 4x(3 - 2x) = 8x² + x - 30
6) x²-x(5 - x) = 8
7) (x - 1)² - 36 = 0
8) (3x - 1)(4x - 3) + 2x(6x - 1) = 2(2x + 7)
9) (x - 2)² + 4(x - 3) =(x² + x - 3)
10) (x - 2)² – 2(x + 1) = (x - 1)(x - 2)
11) (x - 2)² + 3(x - 5) = x² + 3x - 3
12)(x - 3)² + (x + 3)² = 2 (x² +9)
13) (3x - 1)2 + (3x +1)² = 2(9x² + 4) + 1
14) (x - 1)(x - 2) + (2x + 1) = 5x²
giải phương trình
\(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)^{ }\)
\(\frac{2a-9}{2a-5}+\frac{3a}{3a-2}=2\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{8x^23}{3\left(1-4x^2\right)}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)
\(\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)
\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\frac{5x-2}{2-2x}+\frac{2x-1}{2}=1-\frac{x^2+x-3}{1-x}\)
giải phương trình, tiếp
\(\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\)
\(\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(4\left(2x+7\right)^2=9\left(x+3\right)^2\)
\(\frac{1}{9}\left(x-3\right)^2-\frac{1}{25}\left(x+5\right)^2=0\)
\(2x^2-6x+1=0\)
\(3x^2+12x-66=0\)
\(9x^2-30x+225=0\)
\(3x^2-7x+1=0\)
\(3x^2-7x+8=0\)
\(x^2-4x+1=0\)
\(2x^2-6x+1=0\)
Giải các phương trình sau:
a) \(\frac{4}{x-1}-\frac{5}{x-2}=-3\)
b) \(3x-\frac{1}{x-2}=\frac{x-1}{2-x}\)
c) \(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
d) \(\frac{2}{x^2-4}-\frac{1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\)
e) \(\frac{4x}{x^2+4x+3}-1=6\left(\frac{1}{x+3}-\frac{1}{2x+2}\right)\)
f) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{7}{6x+30}\)
g)\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
h) \(\frac{12x+1}{6x-2}-\frac{9x-5}{3x+1}=\frac{108x-36x^2-9}{4\left(9x^2-1\right)}\)
i) \(x+\frac{1}{x}=x^2+\frac{1}{x^2}\)
j) \(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+2\right)\)
k) \(\left(x+1+\frac{1}{x}\right)^2=\left(x-1-\frac{1}{x}\right)^2\)
phân tích ....
a, x^3 -1
b,8x^3-y^3
c,x^2-8x+16
d,25y^3-1
e,27-8y^3
2x^2-8x+8
5(x+2)-8-7(2x-3)
Giải phương trình: a/ (x^2+1)(x-1)=0
b/x^3+1=x(x+1)
c/ 7-(2x+4)=-(x+4)
d/ (x-1)-(2x-1)=9-x
e/ x(x+3)^2-3x=(x+2)^3+1
f/ (x-3)(x+4)-2(4x-2)=(x-4)^2
giải phương trình
a: \(\frac{1-x}{x+1}\) + 3 = \(\frac{2x+3}{x+1}\)
b: \(\frac{x+5}{x-5}\) - \(\frac{x-5}{x+5}\) = \(\frac{20}{x^2-25}\)
c: \(\frac{1-6x}{x-2}\) + \(\frac{9x+4}{x+2}\) = \(\frac{x\left[3x-2\right]+1}{x^2-4}\)
d: \(\frac{3x+2}{3x-2}\) - \(\frac{6}{2+3x}\) = \(\frac{9x^2}{9x^2-4}\)
giúp với mình đang cần ghấp