\(\sqrt{2}\)+\(\sqrt{80}\)=\(\sqrt{2}\)+\(\sqrt{16.5}\)=\(\sqrt{2}\)+4\(\sqrt{5}\)
\(\sqrt{2}+\sqrt{80}=\sqrt{2}+\sqrt{16.5}=\sqrt{2}+4\sqrt{5}\)
\(\sqrt{2}\)+\(\sqrt{80}\)=\(\sqrt{2}\)+\(\sqrt{16.5}\)=\(\sqrt{2}\)+4\(\sqrt{5}\)
\(\sqrt{2}+\sqrt{80}=\sqrt{2}+\sqrt{16.5}=\sqrt{2}+4\sqrt{5}\)
Rút gọn : \(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\left(\sqrt{10}-\sqrt{2}\right)\)
Rút gọn : \(\frac{\sqrt{x}}{\sqrt{x}+5}+\frac{10\sqrt{x}}{25-x}-\frac{5}{\sqrt{x}+5}\)
a) So sánh : \(\sqrt{17}+\sqrt{26}+1va`\sqrt{99}\)
b) Chứng minh \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
Bài 1 rút gon biểu thức
a,\(\sqrt{72}-3\sqrt{48}-5\sqrt{8}+4\sqrt{27}\)
b,\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}\)
Giải phương trình: \(-2\left(\sqrt{1+x}+\sqrt{1-x}\right)+7=\sqrt{\left(5-2x\right)\left(5+2x\right)}-2\sqrt{1-x^2}\)
\(\sqrt{5-\sqrt{3}}+\sqrt{5+\sqrt{3}}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
giải phương trình
a,2\(\sqrt{3x}\) +12=4x-5\(\sqrt{3}\)
b,2(\(\sqrt{5}\)-x)+2=4(\(\sqrt{5x}\)-5)
c,\(\sqrt{2}\)(x+5)-4x=5+4\(\sqrt{2}\)
d,\(\frac{7x+1}{2001}\)+1=\(\frac{2+3x}{2003}\)+\(\frac{2\left(2x+2001\right)}{2001}\)
Giải hệ phương trình: \(\begin{cases}y^3-3y^2-6x+2=\frac{\sqrt{y^3+6x+10}-\sqrt{2y^3-3y^2}}{x^2+2x+2016}\\\sqrt{2x^2-xy+x}=3y-2x-3\end{cases}\)