Cho phương trình bậc hai: x2 – 2mx + 2m – 5 = 0 ( m: tham số ) (1)
a/ Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m.
b/ Gọi x1, x2 là nghiệm của phương trình (1). Tìm m để ( x1 – x2 )2 = 32
1. Cho phương trình: x2 – 2(2m – 1)x + 8m - 8 = 0.(1)
a) Giải (1) khi m = 2.
b, Tìm m để phương trình có hai nghiệm phân biệt
c) Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn A = đạt giá trị nhỏ nhất
Tìm m để phương trình x^2 − 2m x + m - 3 = 0 có hai nghiệm phân biệt x1, x2 thoả mãn (x1-2x2)^2+x2-2mx1=20
phương trình x^2 + (2m+1)x +m^2 -1. tìm m để phương trình có hai nghiệm phân biệt thõa mãn(x1-x2)^2=x1-5x2
Cho phương trình x2 - 2(m + 3)x + m2 + 3 = 0 Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn (2x1 - 1)(2x2 - 1) = 9
Cho phương trình x2 - (2m+5)x +2m + 1 = 0 với m là tham số có 2 nghiệm dương phân biệt x1,x2 . Tìm m thỏa mãn ∣∣√x1−√x2∣∣|x1−x2| có giá trị nhỏ nhất.
giai giup minh vs
Tìm giá trị của M để phương trình 2x2 -5x + 2m - 1= 0 có hai nghiệm phân biệt x1, x2 thoả mãn 1/ x1 + 1/x2 = 5/2
Cho phương trình: \(x^2\) - (2m+3)x - 2m - 4 = 0 (m là tham số).
a) Tìm m để phương trình có 2 nghiệm phân biệt.
b) Tìm m phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn |x1| + |x2| = 5
Cho phương trình : x2 - 3mx + 3m - 1 = 0
Tìm m để phương trình có 2 nghiệm phân biệt x1, x2
Thỏa mãn: x12 + x2 2 = 6