1. Tính:
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\)
2. Chứng minh:
a) \(\dfrac{\left(3\sqrt{xy}-6y.2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{y}{\sqrt{x}-\sqrt{y}}-\dfrac{2\sqrt{xy}}{xy}\right)=\sqrt{x}+\sqrt{y}\)
giải hệ phương trình sau
1)\(\left\{{}\begin{matrix}\left(\sqrt{x^2+1}-4x^2y+x\right)\left(\sqrt{4y^2+1}+1\right)=8x^2y^2\\x^2y-x+2=0\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}2x\sqrt{y}+y\sqrt{x}=3\sqrt{4y-3}\\2y\sqrt{x}+x\sqrt{y}=3\sqrt{4x-3}\end{matrix}\right.\)
1) rút gọn biểu thức sau :
a) \(\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\) b) \(\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\) c ) \(\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
d) \(\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\) e) \(\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{y}}\) ( với x>0 , y>0 )
f) \(\sqrt{8-2\sqrt{15}}+\sqrt{5}+\sqrt{3}\) g) \(\sqrt{9-2\sqrt{4}}-\sqrt{9+2\sqrt{14}}\)
iải giúp mình mấy phương trình này với
\(\sqrt{-4x^4y^2+16x^2y+9}-\sqrt{x^2y^2-2y^2}=2\left(x^2+\dfrac{1}{x^2}\right)\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\sqrt{x+y}+\sqrt{x-y}=2\sqrt{y}\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
giải hệ pt sau
\(\left\{{}\begin{matrix}y^3+\sqrt{8x^4-2y}=2\left(2x^4+3\right)\\\sqrt{2x^2+x+y}+2\sqrt{x+2y}=\sqrt{9x-2x^2+19y}\end{matrix}\right.\)
cho 3 số x, y, z dương thỏa mãn x+ y+ z=1
\(\sqrt{2x^2+xy+2y^2}\)+\(\sqrt{2y^2+yz+2z^2}\)+\(\sqrt{2z^2+zx+2x^2}\)>= 5
Cho \(A=\frac{\sqrt{x^3}}{\sqrt{xy}-2y}+\frac{2x}{2\sqrt{xy}+2\sqrt{y}-x-\sqrt{x}}.\frac{1-x}{1-\sqrt{x}}\)
Rút gọn A
Tìm các số nguyên dương x để y = 625 và A < 0,2
tìm x:
\(\sqrt{x^2+x+1}=1\)
\(\sqrt{x^2+1}=-3\)
\(\sqrt{x^2-10x+25}=7-2x\)
\(\sqrt{2x+5}=5\)
\(\sqrt{x^2-4x+4}-2x+5=0\)