Rút gọn và tính giá trị. 2xy(x^2y-1/2xy)-2x^2y(xy-1/2y)+1 với x = -2 ; y= 1/2
2xy - (x+y)2
Chứng minh (x+y)(x+y)=x^2+2xy+y^2 b(x-y)(x-y)=x^2-2xy+y^2 c(x-z)(x+z)=x^2-z^2
(x2+2xy-3) (-xy)
(x2 + 2xy - 3)(-xy)
tim x,y thoa man : y^2+2xy-7x-12=0
d, \(2xy^2+x^2y^4+7\)
\(=2xy^2+x^2y^4+1-1+7\)
\(=\left(xy^2+1\right)^2+6\)
Vì \(\left(xy^2+1\right)^2\)≥0 nên \(\left(xy^2+1\right)^2+6\) ≥ 6
Dấu "=" xảy ra ⇔ \(xy^2+1=0\)
⇔ \(xy^2=-1\)
Vậy GTNN của đa thức là 6 tại \(xy^2\)= -1
a. (-2x^3) . (x^2 + 5x – 1/2 )
b. (1/2xy -1 ) . ( x^3 – 2x – 6 )
Phân tích các đa thức sau thành nhân tử:
a. 4x – 20y
b. 5x2 + 5xy – x – y
c. x2 – 2xy – z2 + y2